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Abstract

The paper presents the solution of the problem related to controlling nonstationary vibrations in a certain point of a

rectangular plate by introducing an additional (control) load whose variation vs. time law is to be defined. The problem

is solved by using the nonclassical theory of plates and Tikhonov’s regularization method.
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1. Introduction

Developing the theoretical basics of controlling strain at nonstationary vibration of mechanical systems

with distributed parameters relates to complex, and often to ill-posed inverse problems in mathematical
physics. In dealing with these problems, relevant partial differential equations have to be used, the time

variable therein playing a key role.

In the paper (Kozdoba and Krukovsky, 1982), it was noted that, in principle, the inverse problem can be

treated as a partial case of the control problem in the presence of a control objective. Therefore, the

assumptions on the ill-posedness of inverse problems in mathematical physics, including also problems in

impulse strain of mechanical systems, are also true, at certain generalization, for nonstationary strain

processes control problems.

At present, the methods of solving inverse problems in identifying external actions on mechanical sys-
tems with distributed parameters are developing rapidly. The baseline data for solving such problems, when

establishing the causal characteristics, are taken to be quantities that can be measured as indirect mani-

festations (displacements and strain). Several solutions are known for nonstationary inverse problems in
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rod systems (Gladwell, 1984; Lukianova, 1985; Romanenko et al., 1989; and Krasnobaev and Potietiun’ko,

1989). The solutions to ill-posed inverse nonstationary problems in elasticity theory for rectangular plates

loaded transversely as well as tangentially to the outer face surface, and to a flat spherical shell are given in

papers (Yanyutin and Voropay, 2002 and Yanyutin et al., 2003). The identification of a dynamic distrib-
uted load applied non-axisymmetrically to a cylindrical shell has been described in the paper (Yanyutin and

Yanchevsky, 2001). The same paper also presents the technique of controlling axial vibration processes in a

certain point of a finite-length rod, and a certain area of the rod whose dimensions are small as compared to

the rod length. The monograph (Skopetsky et al., 2002) also relates to research in this area.

When solving problems related to vibration of rectangular plates, expansion of sought-for quantities to

functional series satisfying the boundary conditions exactly is widely used. Let us mention one such paper

(Shupikov and Smetankina, 2001), which deals with the solution of a direct nonstationary problem in the

theory of elasticity for a plate with an arbitrary contour. The paper considers a rectangular plate containing
a plate of required shape. At this, by introducing additional loads, one can realize the procedure of sat-

isfying the boundary conditions on its contour by controlling the strained state of the rectangular plate.
2. Direct problem

This paper, which describes the solution of the problem related to controlling the vibration (strain)

process in a certain point on the median plane of a hinged rectangular plate, uses the Fourier series theory.

The plate is subject to action of a transverse concentrated force P ðtÞ in point x0, y0 (Fig. 1), the rectangular
plate being referenced to the Cartesian rectangular coordinates x, y, z. The strain process in a certain point

xs, ys is controlled by introducing an additional concentrated force GðtÞ applied to point xc, yc. The plate

dimensions along the X and Y -axes are equal to l and m respectively. Since the problem stated relates to the

class of ill-posed problems in mathematical physics, and it has no exact solution, Tikhonov’s regularization
method is used to find an approximate solution.

Let us assume that an isotropic plate with constant thickness h is subject to an impulse load in a certain

point, the load’s time-dependent law of variation P ðtÞ being known. The plate material is characterized by

the following constants: E is Young’s module and m is Poisson’s ratio. An additional condition is imposed

on the elastic strain of the plate, viz. the control criterion (for instance, absence of normal displacement in a

certain point, or defining variation of this displacement to a specific law). To implement the required
Fig. 1. Scheme for controlling nonstationary vibrations of a plate.
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condition, a control load whose time-dependent law of variation GðtÞ is to be determined is applied to the

plate in a certain point. Determining this function is the matter of solving this control problem.

The system of equations for forced vibration of a rectangular isotropic elastic plate affected by two

transverse concentrated loads applied to different points of the plate can be written in the form (Mindlin,
1951)
G0hðr2w0 þ wxyÞ ¼ qh o2w0

ot2 � Pzðx; y; tÞ þ Gzðx; y; tÞ;

Dr2wxy � G0hðwxy þr2w0Þ ¼ q � I o2wxy

ot2 ;

D
2
ð1� mÞr2uxy þ ð1þ mÞr2

1wxy

� �
� G0hðuxy þr2

1w0Þ ¼ q � I o2uxy

ot2 ;

8>>><
>>>:

ð1Þ
where the loads are introduced by Pzðx; y; tÞ ¼ dðx� x0Þdðy � y0ÞP ðtÞ and Gzðx; y; tÞ ¼ dðx� xcÞdðy � ycÞGðtÞ;
here P ðtÞ is the specified function, and GðtÞ is the one to be determined; and dðxÞ is the delta-function.

Besides, in (1) we denote G0 ¼ k0G; I ¼ h3=12; D ¼ Eh3

12ð1�m2Þ; wxy ¼
owx
ox þ owy

oy ; uxy ¼ owx
ox � owy

oy ; r2 ¼ o2

ox2 þ o2

oy2;

r2
1 ¼ o2

ox2 � o2

oy2; w0ðx; y; t) is the plate deflection, and wxðx; y; tÞ, wyðx; y; tÞ are the angles of rotation of the

normal to the median plane of the plate in the plane zOx and zOy respectively.

By solving the system of equations (1) for a hinged plate at zero initial conditions, the normal dis-

placement of the plate’s median plane and the angles of rotation of normals in a point with coordinates
xs; ys can be found from the following relationships:
wðxs; ys; tÞ ¼
Z t

0

P ðsÞKW
P ðt � sÞds�

Z t

0

GðsÞKW
G ðt � sÞds;

wxðxs; ys; tÞ ¼
Z t

0

P ðsÞKWX
P ðt � sÞds�

Z t

0

GðsÞKWX
G ðt � sÞds;

wyðxs; ys; tÞ ¼
Z t

0

PðsÞKWY
P ðt � sÞds�

Z t

0

GðsÞKWY
G ðt � sÞds;

ð2Þ
where
KW
P ðtÞ ¼

X1
k¼1

X1
n¼1

CP
kn

Dkn
sin

kp � xs
l

sin
np � ys
m

X1kn sinx1knt½ � X2kn sinx2knt�;

KW
G ðtÞ ¼

X1
k¼1

X1
n¼1

CG
kn

Dkn
sin

kp � xs
l

sin
np � ys
m

X1kn sinx1knt½ � X2kn sinx2knt�;

KWX
P ðtÞ ¼

X1
k¼1

X1
n¼1

CP
kn � b � k

�
k

Dkn
cos

kp � xs
l

� sin np � ys
m

sinx1knt
x1kn

�
� sinx2knt

x2kn

�
;

KWX
G ðtÞ ¼

X1
k¼1

X1
n¼1

CG
kn � b � k

�
k

Dkn
cos

kp � xs
l

� sin np � ys
m

sinx1knt
x1kn

�
� sinx2knt

x2kn

�
;

KWY
P ðtÞ ¼

X1
k¼1

X1
n¼1

CP
kn � b � l�

n

Dkn
sin

kp � xs
l

� cos np � ys
m

sinx1knt
x1kn

�
� sinx2knt

x2kn

�
;

KWY
G ðtÞ ¼

X1
k¼1

X1
n¼1

CG
kn � b � l�

n

Dkn
sin

kp � xs
l

� cos np � ys
m

sinx1knt
x1kn

�
� sinx2knt

x2kn

�
:
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Here
a ¼ G0

q
; b ¼ G0h

q � I ; d ¼ D
q � I ; k2kn ¼ p2 k2

l2

�
þ n2

m2

�
; l2

kn ¼ p2 k2

l2

�
� n2

m2

�
;

k�k ¼ p
k
l
; l�

n ¼ p
n
m
; Dkn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2knðaþ dÞ þ b
� 	2 � 4 � a � d � k4kn

q
;

X1kn ¼ x1kn �
d � k2kn þ b

x1kn
; X2kn ¼ x2kn �

d � k2kn þ b
x2kn

; x1kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 k2knðaþ dÞ þ b

� 	
þ Dkn

� �q
;

x2kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 k2knðaþ dÞ þ b

� 	
� Dkn

� �q
:

Coefficients CP
kn and CG

kn in (2) represent the two-dimensional planar configuration of external loads

affecting the plate. For concentrated plate loading, these coefficients are equal to
CP
kn ¼

1

qh
� 4

l � m sin
kp � x0

l
sin

np � y0
m

; CG
kn ¼

1

qh
� 4

l � m sin
kp � xc

l
sin

np � yc
m

:

3. Inverse problem

If it is required, for instance, to eliminate the normal displacement of the plate in a point with coor-

dinates xs, ys, i.e. to meet condition wðxs; ys; tÞ ¼ 0, the following relationship should be fulfilled
Z t

0

P ðsÞKW
P ðt � sÞds ¼

Z t

0

GðsÞKW
G ðt � sÞds; ð3Þ
which, at known function P ðtÞ and sought-for function GðtÞ, is the linear Volterra integral equation of the

Ist kind. Due to the ‘‘essential’’ ill-posedness of the respective problem, it is impossible to obtain an exact

solution of Eq. (3) for an arbitrary point of application of the control action. However, it is possible to

build an approximate solution by using Tikhonov’s regularizing algorithm described, e.g. in (Tikhonov

et al., 1990). For this, we shall write Eq. (3) in the operator form:
AP � p ¼ AG � g; ð4Þ
where AP is an integral operator corresponding to kernel KP ðt � sÞ; AG � KGðt � sÞ; p corresponds to known

force P ðtÞ; and g corresponds to sought-for control action GðtÞ.
By using the regularizing algorithm (Tikhonov et al., 1990), the integral equation is reduced to a reg-

ularized system of linear algebraic equations (SLAE). In matrix form, the regularized SLAE, which yields

the approximate solution of Eq. (4), can be written as
AT
GAG

�
þ aC

	
� g ¼ AT

GAP � p; ð5Þ
where AG is a matrix corresponding to integral operator AG, whose elements are found as

aGji ¼ KG½ðj� iÞ � Dt�; the elements of matrix AP � aPji ¼ KP ½ðj� iÞ � Dt�; vector p corresponds to p, vector g
corresponds to g; a > 0 is the regularization parameter; Dt is the time step; J is the number of steps; and C is

a symmetric tridiagonal (J � 1� J � 1) matrix of the form
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C ¼

1þ 1
Dt2 � 1

Dt2 . . . 0 0
� 1

Dt2 1þ 2
Dt2 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1þ 2
Dt2 � 1

Dt2

0 0 . . . � 1
Dt2 1þ 1

Dt2

2
666664

3
777775
:

The change of control force GðtÞ is found from the solution of SLAE (5)
g ¼ AT
GAG

�
þ aC

	�1
AT

GAP � p: ð6Þ
Relationship (6) is the final expression for solving the control problem.
4. Numerical results

Examples of computations for damping vibrations in a point of a plate with coordinates xs, ys are given.
The following parameters were taken for computation: q ¼ 7890 kg/m3; E ¼ 2:07 � 1011 Pa; m ¼ 0:3;
h ¼ 0:04 m; l ¼ 0:6 m, m ¼ 0:4 m; the coordinates of applying the disturbing force are x0 ¼ 0:45 m and

y0 ¼ 0:3 m; the control point coordinates are xs ¼ 0:3 m and ys ¼ 0:2 m; and the coordinates of applying the

control force are xc ¼ 0:2 m and yc ¼ 0:2 m. The number of terms in the respective double Fourier series

was taken to be 50 � 50.
We considered plate loading with an infinite impulse: P ðtÞ ¼ q � HðtÞ, the intensity of the basic action

force being q ¼ 105 N. The results of computing the control force are shown in Fig. 2a, where curve 1

corresponds to the disturbing force vs. time law of variation, and curve 2 corresponds to the control force.

We investigated the possibility of controlling the vibrations with a ‘‘simplified’’ force whose values were

equal to the mean arithmetic values corresponding to the maximums and minimums of curve 2 in Fig. 2a––

line 3 (Fig. 2a). Fig. 2b shows the deflections in the control point for the following three cases: curve 1 is

absence of control (GðtÞ ¼ 0); curve 2 corresponds to control at GðtÞ related to curve 2 in Fig. 2a; and curve

3 corresponds to action of the ‘‘simplified’’ control force (curve 3 in Fig. 2a).

Fig. 3 shows the distribution of deflection over the plate when controlling the vibrations to function GðtÞ,
which corresponds to curve 2 in Fig. 2a at time points t ¼ 2 � 10�5 s (Fig. 3a) and t ¼ 5 � 10�5 s (Fig. 3b). The

spatial graphs show the development of the strain process in time, caused by applying two concentrated

forces (basic and control ones) to the plate. The Figures show that the normal displacement in the plate
Fig. 2. Vibration control in the centre of the plate.



Fig. 3. Distribution of deflection over the plate median surface.

Fig. 4. Eliminating vibrations in a plate point.
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centre (designated by a point in the Figure) is eliminated by superposition of the wave strain processes

evoked by the basic and control forces.

We considered plate loading with a time-dependent force in the form of a sinusoidal half-wave. In so
doing, absence of loading over a certain time interval (time interval from 0 to 1 � 10�3 s in Fig. 4a) was taken

into account. Fig. 4a shows the results of computing the control force, where the solid line on the graph

corresponds to the law of disturbing force variation vs. time, and the dashed line represents the control

force. Fig. 4b shows the deflections for the cases when there is no control (solid line), and when control is

present (dashed line).

The technique of controlling the transverse vibrations of a plate point described can be simply gen-

eralized for other kinds of loads as well, e.g. for loads distributed over a rectangular or circular area. The

two control schemes of those feasible for different kinds of loading are shown in Fig. 5.
In Fig. 5a, the basic load P is a concentrated force, whereas the control action G is a load uniformly

distributed over the entire surface of the plate. In Fig. 5b, the basic load P is distributed uniformly over the

entire surface of the plate, whereas the control action G is distributed over an area that is small as compared

to plate dimensions. Vibration control is effected in an arbitrary point in the median plane of the plate.

The computation results for the scheme in Fig. 5a are given in Fig. 6. The description of Fig. 6 is similar

to that of Fig. 4.



Fig. 5. Plate loading scheme.

Fig. 6. Eliminating vibrations in a plate point.
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5. Conclusion

The work presents the solution of the problem in controlling nonstationary strain processes in a rect-

angular plate whose equations of motion are accepted according to S.P. Timoshenko’s theory. The pos-

sibility of controlling normal displacements in one point of the plate has been investigated on the

assumption of action thereon of a concentrated impulse load (the basic one) and a concentrated nonsta-

tionary control load applied to a certain point of the plate. The sought-for function is the control load vs.

time law of variation.
When solving the problems, we used the method of expanding the functions in the motions of equation

into Fourier series ensuring an exact satisfaction of the boundary conditions along the plate contour. Based

on the control criterion, the Volterra integral equation of the Ist kind was derived to determine the sought-

for control load. The approximate solution of this equation was built by using Tikhonov’s regularization

method. The effectiveness of solving the problem stated has been demonstrated by several numeric cases.

Let us stress the importance of the problem described herein. By means of the method described in the

paper, it is possible to obtain solutions for nonstationary-loaded elements of structures in the form of

plates, which yield the given strain characteristics vs. time law of variation for an arbitrary point of these
elements.
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